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Abstract

This report addresses the challenges and strategies for mitigating hal-
lucinations in large language models (LLMs), particularly in domain-
specific applications. Hallucinations refer to the generation of unrealistic
or illogical outputs by LLMs. We explore several methods to reduce hallu-
cinations, including using high-quality domain-specific data for training,
ensuring that the model stays up-to-date with new knowledge, and em-
ploying alignment techniques to ensure that the LLM adheres to human
instructions. A key proposition is the adoption of neuro-symbolic sys-
tems, which combine large-scale deep learning models with symbolic AI.
These systems leverage neural networks for fast “black box” probabilistic
predictions while also enabling “white box” logical reasoning. The inte-
gration of these approaches represents a significant technical direction for
future artificial general intelligence and provides a “gray box” approach to
developing trustworthy LLMs for industrial applications. This dual capa-
bility enhances logical reasoning and improves explainability. In addition,
we detail our efforts to construct domain-specific LLMs for finance and
healthcare. Using anti-hallucination strategies, our finance LLM outper-
forms GPT-4 on the CFA tests, while our healthcare LLM ranks first on
the public MedBench competition leaderboard.

1 Introduction

With the unprecedented development of large language models (LLMs), LLMs
are used to improve communication, generate creative text formats, translate
languages effectively, and even assist scientific research. However, LLMs are
notorious for yielding unreliable outputs, which greatly hinder their applica-
tion in real-world tasks, especially for high-stakes decision-making applications
in industries such as healthcare, asset investment, criminal justice, and other
domains.

One of the key challenges is the “hallucination” problem, whereby LLMs may
output content that seems reasonable but is, in fact, incorrect or illogical. As
an inherent limitation of LLM [51], the hallucination phenomenon is inevitable.
Hallucinations can be divided into two categories [13,14]. One is the factuality
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hallucination, where the generated content is inconsistent with the facts of the
real world and contains unexpected fictitious concepts and plots. The other is
faithfulness hallucination, where the generated content is inconsistent with the
input instructions and logic. Both categories pose serious obstacles to ensuring
the accuracy and reliability of model outputs in industry applications.

Domain-specific LLMs focus on understanding and responding to a partic-
ular field or industry, e.g., finance and healthcare, aiming to resolve domain-
specific tasks as highly trained professionals. For real-world industries where
domain-specific LLMs may play crucial roles in decision-making, being trustwor-
thy becomes more demanding. Therefore, domain-specific LLMs must address
the major limitations we discussed above, i.e. hallucinations.

Despite the massive training data in LLM that covers a wide range of top-
ics, a considerable portion of real-world domain knowledge is long-tail, and the
scarcity of domain data may contribute to hallucinations. In specific indus-
try domains, general LLMs may lack professional knowledge and fail to follow
technical instructions due to insufficient domain data at the training stage.

To mitigate factuality hallucination, an effective approach is to address the
issue of data scarcity in training. Feasible solutions include curating high-quality
factual data specifically for the domain, developing automatic data cleaning and
selection techniques, and designing execution engines for high-quality synthetic
data. The massive domain-specific data can greatly reduce the model’s tendency
to fabricate information after training.

Continuous training with high-quality domain-specific data helps LLMs ac-
quire domain knowledge to understand technical nuances in context and instruc-
tions, thereby alleviating faithful hallucinations as well. To further reduce faith-
fulness hallucination and improve productivity, we need to resort to alignment
techniques to ensure that LLMs actively cooperate with professional instructions
to achieve specific goals. Meanwhile, we design reward systems that motivate
LLMs to behave in a way that is consistent with human values and employ re-
inforcement learning to learn from preference feedback in a human-in-the-loop
system that provides safety guidance and supervision.

As a black-box model, LLMs cannot always explain their outputs correctly.
The presence of hallucinations is an intrinsic obstacle that prevents the continu-
ous yielding of reliable explanations, even if prompting LLMs to explain step by
step. Research in the field of interpretability for LLMs is still in development.
For example, dictionary learning from Anthropic is a tool to understand the cor-
respondence between the model components and the particular inputs [3]. The
method has improved analytic capacity to break down the complexity of LLMs
into more understandable features. However, exploring all internal features
learned by LLMs during training is still cost-prohibitive, and effectively manip-
ulating specific features for predictably superior behavior. Lack of explainability
is another challenge for LLMs in gaining trust in high-stakes applications where
a transparent decision process is critical.

To improve explainability in the behavior of LLMs, we can either dive into
attention mechanisms by tools such as dictionary learning to analyze the gener-
ation process, or prompt LLMs to carry out refles and verification step by step
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and assign confidence scores to its responses [7]. It is also possible to produce
counterfactual explanations by providing alternative scenarios where the out-
put of LLMs would change, offering insights into its reasoning process. While
these methods allow users to assess the reliability of the information, the in-
terpretations are contaminated by the intrinsic hallucination within LLMs. To
break through innate limitations, we have introduced neural symbolic systems
to assist LLMs in gaining explainability and transparency in content generation.
Neural symbolic systems are emerging in AI that aim to combine the strengths
of two different AI techniques, i.e., deep learning and symbolic AI. LLMs are
very successful exemplars of deep learning, which excels at learning from vast
amounts of data and generating creative text formats but struggles with tasks
requiring reasoning, logic, and explainability. Symbolic AI uses symbols and
rules to represent knowledge and excels in logical reasoning and explainability.
However, it can be less efficient in learning from data. To bridge this gap by
integrating both approaches, we leverage the reading comprehension capabilities
of LLMs to process raw data and generate an initial understanding. The prelim-
inary instances are then passed to our in-house symbolic reasoning engine that
performs reasoning on domain-specific causal graphs to make decisions. The
final output may combine the multiple interactive results from both modules.
The homemade symbolic reasoning engine can visualize all feasible reasoning
paths, offering more logical and explainable outputs. We name this proposal as
a unique “gray box” approach to trustworthy LLMs in industry domains.

The rest of the content is organized as follows. In Section 2, we detail our
approach to implementing trustworthy domain-specific LLMs, including high-
quality data collection, alignment techniques, and neural symbolic computation.
In Sections 3 and 4, we introduce two domain-specific LLMs, healthcare and fi-
nance, respectively. Our approach to trustworthy domain-sepcific LLMs is com-
patible with any open source foundation model. To demonstrate the feasibility,
we use a homemade 34B foundation model to develop our healthcare LLM, and
choose the open-source Qwen2-72B base model for continuous training and in-
struction alignment to build our finance LLM. In Section 5, we conclude and
then discuss some directions for future work.

2 Methodology Overview

In this section, we present our methodology to construct trustworthy LLMs
in industry domains, which consists of three parts including high-quality data
preparation, alignment techniques, and neuro-symbolic computing techniques.

2.1 High-quality Data Preparation

2.1.1 General Data Processing Pipeline

High-quality training data are essential for effective large language model (LLM)
training. To achieve this, we have amassed a substantial dataset. The primary
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sources of text data include Common Crawl, Wikipedia, books, academic pa-
pers, journals, patents, news articles, and educational resources for K-12. For
code data, the main sources are GitHub and Stack Overflow. Following data
collection, we perform data cleansing, which involves three main steps: filtering,
deduplication, and selection. The overall process is illustrated in Fig. 1.

Filtering: For the filtering process, we employed heuristic rules to filter the
text, which helps avoid selection bias. These heuristic rules allow us to eliminate
low-quality data effectively. Different rules are applied to different types of
text. The filtering primarily focuses on removing duplicate texts using n-gram
repetition detection and sentence-level detection. Additionally, we created a list
of sensitive words and removed any documents that contained those words and
personal identifiable information.

Deduplication: Deduplication includes fuzzy deduplication and exact dedu-
plication [15]. For fuzzy deduplication, We employ Minhash-LSH for approx-
imate deduplication. The process involves several steps: (1) standardize the
text, split the text into sequences using text segmentation, and apply N-Gram
processing to the sequences; (2) compute Minhash values and compress them
into a set of bucketed hash values using Locality Sensitive Hashing (LSH). (3)
perform the approximate deduplication by the hashes. Then, we utilize a suffix
array algorithm for exact deduplication. This method includes: (1) dividing files
according to memory limitations; (2) loading them into memory to compute the
suffix array; (3) identifying duplicate intervals and deleting the entire document
exceeding a predefined duplication threshold (to maintain text integrity). This
step requires substantial memory and is therefore performed at last.

Source
Document

Quality Singal
Computation

Fuzzy
Deduplication

Exact
DeduplicationFiltering

Figure 1: The figure illustrates the primary workflow of our data-cleaning pro-
cess. The purple sections indicate the filtering stages, while the yellow sections
represent the deduplication process.

2.1.2 Recalling High Quality Data from Common Crawl

The Common Crawl (CC) dataset contains an immense collection of web pages.
Traditionally, our approach to processing CC data has been limited to filtering
and deduplication, preventing more advanced analysis of this extensive dataset.
However, to identify reliable and high-quality data across various fields, we
need a more sophisticated processing method. We propose a fine-grained divi-
sion strategy for CC data. Initially, we segment the URLs in all snapshots of
the CC dataset by base URL (e.g., www.google.com is considered a base URL).
We count the occurrences of each base URL and then rank them in descending
order. Our findings indicate that the top 2 million base URLs account for ap-
proximately 65% of the entire CC dataset. Therefore, we believe that annotating
these base URLs with their type, topic, and language will provide valuable in-
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formation. This method allows for a preliminary fine-grained segmentation of
CC data, although it may introduce some inaccuracies.

High-quality data plays a crucial role in the capabilities of general models
[54] [55], but related corpora are extremely scarce. Therefore, we employ a
method similar to the data-recalling mechanism in DeepSeek-Math [34]. This
method recalls high-quality data from CommonCrawl (CC), focusing on three
domains: code, math, and Wiki. The code and math data enhance the model’s
reasoning capabilities, while Wikidata enriches the model’s knowledge. This
process includes seed acquisition, URL aggregation, and fastText-based recall,
as shown in Fig. 2.

Seed collection: For the mathematical and code data, We choose Open-
WebMath [27], StackOverflow pages, and Wikipedia pages as our English initial
seeds. Public available Chinese training datasets are limited to mathematics and
code. Reference to AutoMathText [59], we prompt a base LLM to autonomously
annotate data for topic relevance and educational value, subsequently retrieving
the top 50K entries as Chinese initial seeds. For knowledge, we employ an LLM
to annotate Wikipedia data with educational scores and subsequently train a
classifier. We then collect 50,000 high-quality seeds from wiki sources such as
Wikipedia. We train a fastText model using collected seed data as the positive
samples and random CC documents as the negative samples.

URL aggregation: Due to the insufficient diversity of the seeds, many
target data remain uncollected after the first round of recall. We further enhance
the diversity of the seeds through URL aggregation. We manually annotate sub
URLs (e.g., cloud.tencent.com/developer) from domains where over 10% of the
pages are hit and incorporate the uncollected samples into the seed set.

Iterative recall: After collecting more diverse seeds, we retrain the fastText
model and further recall more target webpages. We repeat the process of URL
aggregation and fastText retraining until over 98% of the recall results have
been collected.

Figure 2: The illustration of high quality data recall.
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2.2 Alignment

In the realm of LLMs, Reinforcement Learning from Human Feedback (RLHF)
emerges as a pivotal strategy to counteract hallucinatory outputs. This section
elaborates on how our alignment technique addresses two distinct types of hal-
lucinations introduced earlier, where the central of the approach is the reward
design.

2.2.1 Data for Instruction Alignment

The initial dataset for supervised fine-tuning (SFT) is compiled from various
open-source instruction tuning projects, including Alpaca, Dolly, Wizard-LLMs,
COIG, and others. From our systematic experimentation, we identify three crit-
ical factors that contribute to trustworthy instruction during the SFT phase:
dataset diversity, dataset quality, and dataset complexity. For dataset diversity,
we emphasize incorporating a mix of domains and ensuring a variety of instruc-
tional formats. This approach aims to enhance the model’s ability to generalize
across different instructional tasks and achieve robust semantic understanding.
Dataset quality is paramount for generating trustworthy outputs. To enhance
the quality of our instruction dataset, we engage human annotators to rigorously
review and label the data, ensuring its accuracy and consistency. Additionally,
we have developed a dataset curation pipeline that utilizes other open-source
LLM to verify data quality, aiming for an accuracy threshold of over 99.9%.
Regarding dataset complexity, we recognize the importance of including com-
plex and challenging instructions, particularly for tasks that involve compound
instructions. To this end, we also involve human annotators in augmenting the
instructions and labeling the expected outputs, further enriching our instruction
complexity.

To further facilitate trust-worthy generation, particularly in providing fac-
tual answers, we have incorporated a diverse instruction data set that includes 6
function calls. We specifically trained the LLMs to better handle reasoning and
topicality queries by utilizing multiple tools, focusing on improving accuracy
and completeness. To this end, we have developed several tools to support this
functionality: a search engine, a mathematical calculation tool, a code inter-
preter, and a symbolic logic engine. The use of these tools is carefully managed
through system prompts to optimize performance and ensure relevant appli-
cation. Overall, the initial instruction dataset used for SFT is around 200K
samples.

2.2.2 Reward Design in Faithfulness Hallucination

A pivotal step to combat faithfulness hallucination is to integrate the reward
models, which act as proxies for human feedback. These models are instrumen-
tal in ensuring that the LLM’s responses adhere to human ethical standards and
preferences, covering aspects like safety, helpfulness, and mathematical reason-
ing acumen. A critical component of RLHF is the development of a robust and
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varied reward model dataset that reflects the vast spectrum of human prefer-
ences.

To construct this dataset, we employ both human annotation and synthetic
data generation techniques. During the human annotation phase, annotators
are tasked with creating prompts that span broad topics such as safety and
logical reasoning, engage with specialized subjects like poetic composition, or
address specific procedural instructions, such as generating outputs in JSON
format. For synthetic data generation, we leverage our model to substitute hu-
man annotators, enabling it to generate prompts by altering and extrapolating
from web-based texts, including the rewriting of questions or the extraction of
content from encyclopedia-like documents.

Unlike the common pairwise comparison of two model responses, as seen in
RLHF methods like DPO [31] and PPO [33], we ask annotators to score each
response individually on a scale from 0-10, following predefined guidelines. In
instances where responses receive equivalent scores, annotators are further asked
to determine which response aligns better with the task requirements.

Our reward model is composed of building a linear projection head on top
of the base model. The objective function includes the squared loss between the
output value and the score, plus a pairwise loss that is applied only when the
ground truth scores are tied. Reflecting on the trade-offs between safety and
helpfulness as documented in previous studies [1, 39], we train separate models
for safety and helpfulness to fine-tune our reward alignment strategy.

2.2.3 Reward Design in Factuality Hallucination

A fundamental aspect of mitigating factuality hallucinations in LLMs involves
training the model to express epistemic uncertainty. When unsure about an an-
swer, the model is trained to respond with “I do not know”. However, accurately
estimating epistemic uncertainty poses significant challenges, particularly in the
context of LLMs, since the epistemic uncertainty stems from various factors such
as insufficient training data or limitations in model capacity [52].

In our approach, we concentrate on knowledge-intensive domains, such as
question-answering (QA) on common knowledge, where it is feasible to construct
a proxy for epistemic uncertainty as that in [18,56].

Initially, we employ few-shot learning techniques to the base model for QA
tasks. The model’s accuracy in these preliminary responses serves as an in-
dicator of whether it possesses the requisite knowledge for the queried topic.
During the subsequent RLHF stage, we re-present the same questions to the
model. A reward system is designed as follows: providing a negative reward
when the model fabricates answers to questions it lacks knowledge on, and a
positive reward when it appropriately expresses uncertainty with phrases like “I
do not know” or “I am not sure about that”. This approach strategically rein-
forces the expression of epistemic uncertainty, enhancing the model’s reliability
by discouraging the generation of unverified information.
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2.2.4 RLHF Training

Given the reward system, the subsequent step is to train our LLM with reinforce-
ment learning algorithm. We leverage the standard off-policy REINFORCE [44]
method rather than PPO or DPO-like methods. We update the parameters θ
of our LLM in the direction of

Eq∼qpoolEa∼πref
min

(
πθ

πref
, ρ

)
∇ log πθ(a|q)

(
r(a|q)− r̄(q)

)
− λ1∇Eq∼qpoolKL(πref ||πθ)− λ2∇Eq∼qsft

KL(πsft||πθ),

where πθ is the current LLM that we aim to optimize, q is a question sam-
pled from our question pool, and a is the corresponding answer sampled from
the reference policy πref . The term πθ

πref
represents the importance sampling

ratio to ensure above function is an unbiased estimator with respect to the cor-
responding on-policy policy gradient. The ratio is typically clipped to reduce
variance, particularly when πθ deviates significantly from πref and the sequence
is long. Additionally, we include two KL divergence terms, i.e., KL(πref ||πθ)
and KL(πsft||πθ), to ensure that the learned abilities do not degenerate during
the RLHF stage. The reward r(a|q) is obtained through either the reward model
or verifiers such as ground truth label matching in GSM8K and unit tests in
Python programs. To reduce the variance of the policy gradient, r̄(q), known as
the baseline, is estimated by averaging the scores of the responses. Generally,
we sample 10 responses for each question and use ρ = 1.0, λ1 = 0.2, and λ2 = 1
in our objective function.

We perform several iterations of the off-policy REINFORCE, transitioning
the policy from π0 (the SFT model) to π1, π2, and so on. In each iteration i,
we set πref = πi−1. This multi-iteration strategy is necessary to progressively
enhance both the helpfulness and safety of the model.

2.2.5 Evaluation of RLHF

To assess the safety and helpfulness post-RLHF, we devised rigorous internal
test sets, each containing over 2000+ tailored questions. The safety test set
covers various categories, including but not limited to illegal activity, insults,
discrimination, sensitive topics, and prompt leaking. The helpfulness test set in-
cludes seven macro topics and eighty micro topics, combined with several specific
instruction-following tasks. Annotators evaluate safety according to our guide-
lines for both SFT and RLHF models individually, while helpfulness is assessed
through side-by-side evaluations. After three RLHF iterations, our model exhib-
ited a decrease in toxicity from 5.8% to 4.9% and an improvement in helpfulness
win rate from 50% to 56% compared to the SFT model. Moreover, mathemati-
cal reasoning capability, as indicated by pass@1 rate in GSM8K, rose from 77%
to 85%. Evaluating RLHF in the context of addressing factual hallucinations
presents distinctive challenges, primarily due to the difficulties associated with
delineating the base model’s knowledge boundaries. Our observations indicate
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that the model more frequently expresses uncertainty in complex tasks than in
simpler ones, suggesting a nuanced understanding of its own knowledge limits.

2.3 Neuro-symbolic Computing

Here, we show our neuro-symbolic solutions for faithfulness hallucination (FH).
FH is inherent in LLMs: as a neural network, LLMs cannot ensure that the
generated sentences are logically correct. Even for a simple calculation prob-
lem, LLMs will produce incorrect answers like humans. The recently proposed
chain-of-thought (COT) methods break the solving process into several sub-
steps. Despite its effectiveness, LLMs may still make mistakes in each reasoning
step [17]. Some methods employ symbolic engines (SEs) in the LLMs to improve
the reasoning performance. However, they use SEs as an external tool [25, 26]
or a logical planner [48].

Logical reasoning is a long-standing problem in machine learning, present-
ing two essential difficulties for the models. The first difficulty is in performing
the step-wise reasoning correctly, that is, using the available premises to derive
the one-step conclusion correctly. The other is in performing effective searching
over massive reasoning paths, which can be challenging for complicated cases.
On the other hand, the logical reasoning problem itself enjoys two features. It
is deterministic. Once the problem is formalized into formal languages, such as
Lean [6], Prolog [24], Prover9 [21], etc., each reasoning step can be verified. Con-
sequently, we can always determine when the reasoning reaches the answer and
verify whether the answer is correct. In this sense, performing logical reasoning
is like playing Go:

“Learning to prove theorems is somewhat analogous to learning to play
Go: both offer an automated way of determining success (the game of
Go is a miniature formal system), and both offer an automated way for
generating new data via self play-type approaches. ” – OpenAI [28].

Another characteristic of logical reasoning is that logical searching can be per-
formed automatically when searching space is finite, e.g., problems with Horn
clauses, and constraint logical programming. This means that we can solve
some logical reasoning problems solely using an external SE. For the problems
that we cannot exhaustively explore, we leverage the power of LLMs to guide
the search direction, analogy to the actors in AlphaGo.

These features of logical reasoning identify two levels of logical reasoning
with LLMs:

• Level 1 (L1): Formalizing the problem into formal languages so that we
can perform strict reasoning using the SEs.

• Level 2 (L2): Upon level 1, guiding the reasoning direction within and for
the SEs.

L1 reasoning requires that the LLMs can translate the problem in the nat-
ural language into formal logical languages, which we refer to as NL2FL. More
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specifically, LLMs should be able to capture the relevant logical rules and facts
in the natural language content and translate them into the SE languages, e.g.,
Prolog and Lean. LLMs should also be able to complement common sense rules
implicit in the content, such as the definition of the relation in the family. L2
reasoning requires that LLMs are experts in certain reasoning scenarios, such
as game playing, business domains, and math proving. L2 is more challenging
than L1 as the search space may be extremely large, e.g., math proving [46].

Our solutions follow the vein of these two levels and currently focus mainly
on L1.

• First, we leverage the semantic ability of LLM to automatically build
casual decision diagrams in certain (professional) fields from a few text
inputs of domain knowledge for cold starting, i.e., NL2FL.

• Then, we propose an internal SE to complete the reasoning steps based
on the causal decision diagram.

• It can handle uncertainty in the formalization process by applying message
propagation technology to complete probabilistic reasoning.

• It can also derive explicit reasoning steps for visualization to make the
entire reasoning process explainable.

• Moreover, along with using SE, we can gradually accumulate a large
amount of high-quality synthetic data for LLM training.

For L2 reasoning, we aim to explore feasible direction paths via reinforcement
learning and continuously improve LLM’s reasoning ability.

2.3.1 Natural Language to Formal Language

To use SEs, we need to translate the problem in natural language into formal
languages. We choose Prolog syntax as our formal language due to its effective-
ness and popularity. Prolog, short for ”Programming in Logic,” is a high-level
logical programming (LP) language associated primarily with artificial intel-
ligence and computational linguistics. Developed in the early 1970s, Prolog
is a declarative language, meaning that the logic of the program is expressed
in terms of relations, represented as facts and rules. Prolog’s strength lies in
its ability to express complex logical relationships and its use in fields where
symbolic reasoning and pattern matching are essential.

Unlike imperative programming languages such as Python, where we must
specify the steps to solve a problem, logical programming like Prolog does not
require this. Instead, we define the problem and the desired goal, and the LPs
automatically determine how to solve it. This is useful when we apply LLM in
specific domains: LLMs do not need to solve every task by themselves, instead,
they can delegate the difficulty to the LPs and let LPs solve the problem for
LLMs. For instance, in a specific medical task where the goal is to classify the
severity degree of an examination report, we can translate the medical rules and
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the examination into formal premises, with which SE can automatically derive
the answer for the query.

With a strong ability to understand semantics, LLMs bridge the gap be-
tween unstructured natural language and formal language. To further improve
the LLM’s ability of NL2FL, we collect a large amount of Prolog code from
swish.swi-prolog.org and translate the Prolog code into natural language using
GPT-4. During the process, we deduplicate similar codes and remove those not
suitable for learning NL2FL. Then we used the paired samples to fine-tune the
LLM. The trained LLM is used to automatically build the causal decision di-
agrams for medical and financial domains. With the causal decision diagrams,
the LLM then extracts the facts from the input text. Table 1 illustrates an
example of NL2FL in a medical case. LLM extracts the rules from a natu-
ral language textbook and expresses them in Prolog. To determine whether
a person is anemic, LLMs take medical examination as input and extract the
“gender” and the “hb” values if available.

Natural language Prolog

A person is considered anemic if their
hemoglobin level is less than 120 g/L
for males or less than 110 g/L for
females.

anemic :- gender(male), hb(X), X <
120; gender(female), hb(X), X < 110.

一个人如果其血红蛋白水平低于120
g/L（男性）或低于110 g/L（女性），
则被认为是贫血。

贫血 :- 性别(男性), 血红蛋白(X), X <
120；性别(女性), 血红蛋白(X), X <
110。

Table 1: An example of NL2FL pair.

2.3.2 Ponens: A Novel Symbolic Engine

The SE takes the extracted facts and the casual decision diagrams as input
and builds a knowledge base instantly. For every query, SE will automatically
derive the answer through logical reasoning. The traditional Prolog SEs, for
example, SWI-Prolog [43], are powerful but face difficulties in several aspects:
(1) they cannot handle cycle rules, (2) they perform costly exhaustive searches
to reach the answer, (3) they cannot derive the exact proofs without additional
manipulations.

Therefore, we propose a novel symbolic engine, Ponens, which supports Pro-
log syntax using Python as the backend. Ponens is named after “modus ponens”,
a basic inference rule in Logic. With Python, Ponens has better scalability in
various scenarios than traditional Prolog engines. For instance, Ponens is di-
rectly compatible with powerful libraries in Python, such as Numpy, SymPy,
and even LLM calls. Therefore, we can integrate off-the-shelf functions to im-
plement various predicates easily.
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2.3.3 Handling Uncertainty via Variational Inference

Note that Ponens is not another Prolog engine, it uses the same syntax as Prolog
but not the same reasoning strategy. With a given query, Prolog performs au-
tomatic reasoning via a deterministic search over the rules. It gradually checks
whether the goal matches the rule conclusion and whether the condition can be
satisfied. This deterministic search is problematic for handling uncertainty in
the natural language. Natural language is semantically vague but the reasoning
is logically sparse. How to handle the uncertainty in natural language remains
a challenging problem. Several traditional approaches have extended Prolog
in such probabilistic logic programming settings, e.g., ProbLog [12, 30]. How-
ever, these methods typically require building an arithmetic circuit [35] for each
query and the treewidth may grow exponentially in the number of entities. To
mitigate these problems, we adopt the variational inference [50] in the Ponens.
By variational inference, reasoning with uncertainty becomes much easier: we
circumvent the essential difficulty in exact inference via approximate inference.
More specifically, LLM extracts the facts along with the estimated probability,
i.e., the generation probability of the facts. The estimated probability is then
fed into the engine as the initial marginal probability in the variational inference
stage.

To make the paper self-contained, we briefly describe here how the vari-
ational inference is applied in reasoning with uncertainty. First, we build a
Markov logic network to model the likelihood. The facts from the LLMs are
treated as the observed variables and the others (including the goals) are treated
as unobserved variables to infer. For a specific assignment of unobserved facts,
MLN estimates how many rules are satisfied. The inference goal is to find the
optimal assignment that best satisfies the rules. Our Ponens uses the varia-
tional mean-field algorithm to perform the inference, yielding better scalability
than traditional Prolog engines. For more details, please refer to the original
paper [50].

2.3.4 Explanation from Ponens

Another strength of Ponens is that we can obtain the explanation for arbitrary
queries. As mentioned above, once the problems are formalized, the symbolic
engines can find the solution automatically. The proof of the solution can be
used as an explanation for the query. However, traditional Prolog engines cannot
directly yield proof during the inference. Although Prolog provides the “trace”
functionality which logs each step during reasoning, the entire reasoning path
remains unknown. To fully recover the proofs, we improve the Ponens to be
capable of extracting the proofs for the solutions. This is achieved by logging
each variable binding step. We save every query and corresponding solutions,
and each solution is associated with a proof which also contains a list of sub-
queries.

This proof enables the visualization and automatic chain-of-thought gen-
eration. Fig. 4 shows an example of visualization where proofs are stored in a
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Figure 3: An example of database and query in Ponens.

Figure 4: Visualization of proof generated automatically by Ponens. The red
(blue) nodes denote the queries (solutions).

directed acyclic diagram for the example task in Fig. 3. When converting it into
text, we automatically obtain the chain-of-thought sentence, see Fig. 5. This
also indicates a way of creating synthetic data. We can gather the explanation
from Ponens when querying the database in the specific domains. This data
can in turn facilitate the reasoning ability of LLM.

2.3.5 Evaluation on Public Datasets

We verify our method on three widely-used datasets, i.e., ProntoQA, ProofWriter,
and FOLIO.

Figure 5: Explanation of proof generated automatically by Ponens.
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• ProntoQA [32] is a dataset for analyzing the deductive reasoning abilities
of LLMs. We use the “fictional characters” version of the dataset, which is
the most challenging. Each version is divided into different subsets based
on the number of reasoning hops required. We evaluate using the most
difficult 5-hop subset. Each question in PrOntoQA is designed to verify
the truthfulness of new facts. We use a 1-shot setting.

• ProofWriter [38] is another commonly used deductive reasoning dataset.
Compared to PrOntoQA, the questions are expressed in a more natural
language form. We use the Open World Assumption (OWA) subset. The
dataset is divided into five parts, each requiring 0, ≤1, ≤2, ≤3, and ≤5
hops of reasoning, respectively. We evaluate using the most challenging
subset. We use a 1-shot setting.

• FOLIO [10] is a challenging expert-written logical reasoning dataset. The
questions mostly align with real-world knowledge and use highly natu-
ral phrasing, requiring complex first-order logic reasoning to solve. We
evaluate using the entire FOLIO test set. We use a 2-shot setting.

For these tasks, we translate the context into formal languages and then
use the symbolic engine to solve the problem. The samples that fail in the
compilation are considered incorrect. Our model is trained based on our INF-
LLM model with our proprietary alignment data, including the NL2FL data.
We compare our model with GPT-4 and Qwen2 models. Table 2 illustrates the
results, measured by answering accuracy, showing that we obtain remarkable
results against advanced models in these logical reasoning tasks. We also include
the ablation of Ponens. When not using Ponens, GPT-4 uses the Prolog engine 1

instead and greatly degrades the performance.

models ProntoQA ProofWriter FOLIO

GPT-4 0.94 0.91 0.56
GPT-4 w/o Ponens 0.83 0.80 -

Qwen2-72B-chat 0.95 0.96 0.44
Qwen1.5-32B-chat 0.91 0.87 0.35
INF-LLM 0.99 0.99 0.58

Table 2: Comparison of different models on ProntoQA, ProofWriter, and FO-
LIO.

3 INF-LLM for Healthcare

Since the emergence of ChatGPT, many large medical language models (LLMs)
have been developed. One of the most notable is Med-PaLM 2 [37] by Google,

1Pyke: https://pyke.sourceforge.net/
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which is fine-tuned on medical domain data based on PaLM 2. Other med-
ical LLMs, such as ChatDoctor [16], MedAlpaca [11], BenTsao [40], Doctor-
GLM [47], ChatMed [61], HuatuoGPT [57], DISC-MedLLM [2], and Taiyi [20],
have been developed primarily through supervised fine-tuning on a base model.
Additionally, models like PMC-LLaMA [45], MedicalGPT [49], Zhongjing [53],
and CareGPT [41] are developed with both domain-specific pretraining and
instruction alignment. Some even utilize reinforcement learning from human
feedback (RLHF) to enhance safety. While these existing medical LLMs demon-
strate capabilities in specific areas of the medical field, there is often a lack of
comprehensive discussion on how to build models that are designed from the
outset to address the challenges of real-world applications. Furthermore, there
is insufficient discussion on how to evaluate whether these models possess the
necessary capabilities for practical application.

The Grand Challenge for Medical LLMs: The capability to retrieve
medical knowledge, reason over it, and answer medical questions comparably to
physicians has long been viewed as a grand challenge, akin to protein folding [37].
Medicine is a complex and critical field, requiring a vast knowledge system that
spans molecules, signaling pathways, cells, organs, tissues, and systems. The
seriousness of the field necessitates that responses to related questions must be
accurate, whereby safety is critical.

During pretraining, large language models read vast amounts of data, in-
cluding books, journals, and a substantial number of web pages and forums.
Ensuring that the medical knowledge learned through training is authoritative,
accurate, and up-to-date, while also being effectively mastered and reliably ap-
plied in reasoning and output, is a prerequisite for the practical value of medical
LLMs. In our view, the main challenge is how to make medical LLMs trustwor-
thy.

To build a trustworthy medical LLM that can encode medical knowledge,follow
medical instructions,and be competent for medical applications, we categorize
the LLM’s medical skills into three levels,as shown in the Figure 6 below.

• Basic Skills: These can be likened to those of a medical doctoral student
nearing completion of their studies. Such a model has acquired rich and
systematic knowledge of biomedical and clinical medicine and is capable
of using this knowledge for medical logical reasoning and analysis to draw
conclusions.

• Industry-specific Skills: These skills are akin to those of a resident
physician who can write medical documents, collect patient histories,
maintain progress notes, and prescribe treatments under the guidance of
senior physicians.

• Application Skills: These skills are comparable to those of an associate
chief physician or chief physician. In specific application scenarios, the
model must possess the ability to tackle challenging tasks and achieve
a certain level of performance. Unlike industry-specific capabilities, this
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emphasizes a specialized approach to solving particular problems with a
focus on achieving specific performance metrics.

Figure 6: Medical skill levels overview.

To solve the trustworthiness problem when building medical LLMs in INF,
we adhere to the following rules:

• Use high-quality, authoritative pretraining data that is rigorously cleaned.

• Employ professionally annotated medical data for supervised training.

• Ensure model predictions are traceable.

• Make the reasoning process interpretable.

The first rule primarily pertains to training basic skills, while the second rule
focuses on industry-specific skills training. The latter two rules are essential
for developing reliable medical applications. These principles will be further
detailed in the sections on data preparation and application development.

3.1 High-quality Domain Data for Continuous Training

In this section, we will introduce our methodology for high-quality continuous
training data preparation. It mainly includes four parts: data source control,
quality assessment framework, data cleaning framework, and data classification
system.

3.1.1 Data Collection: High-Quality Data from Authoritative Sources

The knowledge acquired through pretraining and continuous training comes
from authoritative and highly current sources, serving as the foundation for
trustworthy models. The dataset used for our model is meticulously curated
from a wide range of authoritative and credible sources ensuring both the au-
thority and accuracy of the information. We collected over 70B tokens in health-
care and medical domain from various sources, such as encyclopedias, journal
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articles, authoritative clinical guidelines, books, educational materials, and au-
thentic hospital records. These sources ensure a comprehensive coverage of
medical research, teaching, clinical practice, user interaction, and medical pop-
ularization.

3.1.2 Data Quality Assessment: What is High-Quality Data

Although domain data is collected from authoritative and highly current sources,
there still exists a kind of noise when adapting those data for training. Further
control and improvement of data quality have become crucial factors for the
success of medical LLMs. This study has developed a comprehensive data qual-
ity control process aimed at improving the quality of medical data through
stricter standards. As illustrated in the Figure 7, the entire data quality control
technology framework is presented. The core technologies include data qual-
ity assessment standards, a data quality scoring framework, a data cleaning
framework, and a data classification system.

Figure 7: Data quality control framework.

Standards for Data Quality Evaluation: In the medical field, the foun-
dational quality of data critically impacts the successful training of models.
Basic grammatical and semantic issues, as well as various types of noise and
data duplication, can affect model performance. Moreover, due to the rigor
required in the medical field, there are higher demands for the professionalism,
accuracy, reliability, completeness, and ethics of the responses generated by
LLMs. Therefore, beyond the basic quality of data, the quality of information
in medical data also demands higher standards.

We have developed a comprehensive medical data quality assessment frame-
work, focusing on three aspects: foundational quality, information quality, and
data security. As shown in Figure 8, the framework encompasses six primary di-
mensions: grammatical correctness, formatting norms, text cleanliness, seman-
tic validity, information validity, and ethical security. The first four dimensions
are foundational quality controls, where information validity directly measures
the accuracy and other aspects of data information, and ethical security sets
higher standards for data compliance and sensitivity.

17



Figure 8: INF healthcare data quality assessment standards.
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Additionally, each primary dimension includes several secondary dimensions.
For instance, text cleanliness further divides into categories like navigation bars,
advertisements, special symbols, and noise segments. Information validity stan-
dardizes and differentiates the usefulness, accuracy, professionalism, reliability,
and completeness of data information. The entire medical data assessment
framework covers 45 secondary quality dimensions to provide a comprehensive
evaluation and control of medical data quality.

Data Quality Scoring Framework: Through the data quality assessment
framework, it is convenient to conduct a qualitative analysis of issues within
medical data. To quantify these issues more precisely, this study proposes a
universal data quality scoring strategy based on the assessment framework out-
lined earlier.

• Impact Degree Rating: Initially, the 45 secondary quality assessment
dimensions are rated for their impact degree, divided into 4 to 6 levels.
Higher levels indicate more severe issues that have a greater negative im-
pact on model training. For example, basic grammatical errors (such as
typos) have a minor impact, whereas inaccurate information can lead the
model to learn incorrect knowledge, and the most severe issues, like data
violating safety regulations, receive the highest impact ratings.

• Quality Assessment and Text Length : Based on the impact ratings,
the quality of data can be precisely assessed after each type of issue oc-
curs. Considering that the impact of most issues is diluted as text length
increases, this also affects the quality score of the data.

• Global Frequency Impact : From a global perspective of the dataset,
the frequency of certain issues significantly affects model training. For
instance, while some issues might have a minor impact when they occur
only once, they require special attention if they occur frequently. This
study measures the impact of globally frequent issues through frequency
scaling.

Taking these factors into account, we have designed a quality scoring strategy
for individual data entries and datasets to achieve a quantitative analysis of data
quality.

The qualitative and quantitative assessments of data quality eventually form
in a detailed quality analysis report. This report includes the quality scores of
the dataset, statistical proportions of various issues, and changes in distribution
compared to previous cleaning results. Additionally, for critical issues, the re-
port also provides the benefits after the issues have been cleaned, further guiding
the data cleaning process.

3.1.3 Data Cleaning Framework: How to Achieve High-Quality Data

The primary goal of data cleaning is to address various issues identified during
the quality assessment process. Based on a detailed data quality assessment
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report, systematic statistical analysis and feature extraction are performed to
formulate a cleaning strategy report. According to this report, key issues in
the data, such as characteristics of noise, are analyzed in detail. These issues
are precisely located through the construction of heuristic rules, followed by the
repair or removal of problematic segments.

In addressing different sources of medical datasets, this study has developed
various cleaning methods. Each dataset undergoes an independent quality as-
sessment and cleaning treatment. During the cleaning process, mature heuristic
rules formed are incorporated into a cleaning toolkit for direct application when
processing other datasets, thereby enhancing cleaning efficiency. In particular,
the quality inspection and cleaning process focus on three main aspects: se-
mantic integrity of the data, ensuring consistency in logic and meaning; text
cleanliness, removing extraneous characters and noise; and information validity,
ensuring data accuracy and practical applicability.

For more complex issues, a combination of rules is supported and resolved
through data processing algorithm logic, the N-gram models or classification
models. N-gram models help capture the contextual relationships of words and
phrases, better identifying and correcting potential issues in the data. Classi-
fication models can automatically categorize and label problem data based on
training data, further improving the precision and efficiency of cleaning. This
study has constructed an end-to-end data identification and cleaning framework
that adopts a divide-and-conquer approach to tackle the challenges of identify-
ing medical professional books, dealing with lengthy texts, complex assessments,
and difficult cleaning. This framework can modularly handle each segment and
has proven highly adaptable and practical in scenarios involving book identifi-
cation and processing.

Table 3 list the changes in scores after data cleaning for typical medical data,
as well as the cleaning rates. It can be seen that the scores for health science
data and guideline data have significant changes before and after cleaning. The
score for health science data increased from 58.28 before cleaning to 91.82.
Additionally, thanks to the refined cleaning scheme, our cleaning rate remained
at 10.6%.

Ultimately, this work developed 140 universal text cleaning rules and 42
universal data cleaning scripts. These rules and scripts have been rigorously
tested and validated, effectively supporting the cleaning of various data types in
medical texts, thus ensuring high-quality data and providing a solid foundation
for subsequent training of large-scale language models.

Table 3: Example of data quality changes and cleaning rate statistics before
and after data cleansing.

Datasets Pre-Cleaning Score Post-Cleaning Score Cleaning Rate

Health Science Popularization(健康科普) 58.28 91.82 10.64%
Manuals(说明书) 83.56 96.5 2.12%
Guidance Documents(指南) 50.2 87.77 19.59%
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3.1.4 Data Classification System: Better Understand Your High-
Quality Data

After the data cleaning phase, this technical report has accumulated a large
amount of high-quality medical data, which has greatly improved in terms of
text quality, information quality, and ethical safety, laying a solid foundation
for building a reliable medical large model. However, medicine as a complex
life science, has unique professionalism and rigor. The medical data knowledge
system is complex and diverse, necessitating more refined management and
categorization of stored medical data.

To this end, this technical report further constructs a detailed categorization
system for both Traditional Chinese Medicine (TCM) and Western medicine
data. The purposes of this categorization system are:

• Complete Data Analysis: To help promptly identify issues of knowl-
edge balance and ensure comprehensive data coverage.

• Data Ratio Guidance: During the pre-training phase, to guide the
setting of dataset ratio parameters, optimizing model training outcomes.

• Model Capability Assessment: To form a feedback loop with model
capability assessment, helping to promptly identify poorly performing and
data-deficient task categories, and improve model performance.

Based on the medical discipline classification framework, this technical re-
port has constructed detailed two-tier categorization systems for both TCM
and Western medicine. For example, in Western medicine, the system includes
37 primary categories such as “Physiology”, “Pathology”, “Internal Medicine”,
and “Surgery”. “Physiology” is further subdivided into “Cell Physiology”,
“Systemic Physiology”, “Human Physiology” etc.; “Pathology” into “Systemic
Pathology”, “Clinical Pathology”, etc.; “Internal Medicine” includes 12 sub-
categories such as “Cardiology”, “Respiratory Medicine”, and “Gastroenterol-
ogy”. The entire system comprises 55 secondary subcategories.

Similarly, for TCM data, we have also constructed a two-level categorization
system. TCM data has 8 primary categories covering “Theoretical Studies”,
“Clinical Disciplines”, “Formula Studies”, “Diagnostic Studies”, etc., with a
total of 24 secondary categories. For example, under “Clinical Disciplines” are
categories like “Internal Medicine”, “Surgery”, “Orthopedics”; under “Acupunc-
ture” are “Acupuncture Therapy”, “Moxibustion”, etc.

By building these categorization systems, we can manage and utilize medical
data more systematically and scientifically, thereby enhancing data usability and
model reliability.

According to the Figure 9, in Western medicine data, the categories “Phar-
macology”, “Internal Medicine”, and “Pathology” occupy a significant propor-
tion of the data, followed by “Microbiology”, “Surgical Science”, and “Anatomy”.
This shows that both the theoretical foundations (such as “Pharmacology”,
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Figure 9: Example of western medical data classification

Figure 10: Example of traditional chinese medicine(TCM) data classification
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“Pathology”) and applied medicine (such as “Internal Medicine”, “Surgical Sci-
ence”) are well represented in the dataset, ensuring comprehensive learning
coverage of the model.

For TCM data, as shown in Figure 10, the applied categories (such as ”Clin-
ical Disciplines”) and theoretical foundations (such as ”Classical Literature”)
each account for over 30% of the data. This indicates that TCM data is well-
balanced and comprehensively covers both foundational theory and practical
application. This balanced data distribution includes a deep understanding of
classic TCM theory as well as rich practical experience.

3.2 Domain Data Preparation for Instruction Following

3.2.1 Overview

In this section, we first introduce the capabilities that INF-Med should possess
to execute various medical instructions, followed by a description of how we
constructed the medical instruction dataset.

As above mentioned, we divide the learning and growth trajectory of doc-
tors in Mainland China into three stages, corresponding to the basic skills,
industry-specific skills, and application skills of the medical LLM. Based on the
role played by the LLM at each stage, we define the corresponding data and
capability system.

• Basic Skills: This stage focuses on the usage of basic knowledge and log-
ical reasoning. We constructed a large amount of Chain-of-Thought(CoT)
data based on various medical professional qualification examinations to
enhance the model’s medical reasoning capabilities.

• Industry-specific Skills: This stage focuses on comprehensive medical
industry capabilities. We collected comprehensive medical domain data,
including knowledge Q&A, document generation, information processing,
and diagnostic assistance, to improve the model’s ability to perform high-
frequency tasks within the medical industry.

• Application Skills: This stage focuses on highly specialized application
capabilities within the medical industry. Specially, we constructed three
capabilities in the medical examination application: abnormal terms ex-
traction, personalized advice generation, and report quality control.

To construct a trustworthy, comprehensive LLM that aligns with the current
state of the medical industry, INF-Med simulate the various stages of a doctor’s
growth in mainland China and is trained with different stages of instruction
alignment data.

3.2.2 Instruction Alignment Data for Basic Medical Skills

Due to the presence of complex reasoning scenarios in the medical field, there
is a high demand for the logical capabilities of models. To improve the perfor-
mance of models in these scenarios, we referenced the work of Auto-CoT [60]
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by constructing a large amount of medical scenario COT [42] data through
automated methods. Additionally, to ensure the correctness of medical knowl-
edge and the completeness of logic in the data, our medical annotation team
conducted rigorous quality control checks on all the data.

Apart from data quality, we also observed that the performance of general
large language models in Chinese and English scenarios is inconsistent. This
discrepancy may be attributed to the varying proportions and quality of corpora
in different languages during the pre-training phase. To enhance the model’s
performance across different languages, we adopted the method using cross-
lingual CoT [29], which extends the model’s capabilities from a single language
to multiple languages. By utilizing this approach, we can enhance the model’s
effectiveness across various languages.

3.2.3 Instruction Alignment Data for Industry-specific Skills

As far as we know, current LLM in the healthcare industry (e.g., Med-PaLM
[36], PMC-Llama [45], HuaTuo [40]) are more focused on single dimensions,
such as passing professional qualification exams or enhancing doctor-patient
Q&A and dialogue, lack of systematic capacity building solutions. Therefore,
we construct training data involving multiple capability dimensions, such as
knowledge question-answering, document generation, clinical diagnosis, safety
ethics, and document structuring.

Data Collection and Selection: To enhance the capabilities of LLM
across various dimensions in the healthcare industry, we collected a substan-
tial amount of open-source instruction alignment data in the medical field and
performed rigorous data selection. Specifically, we completed the initial data
selecting using the following three heuristic filtering methods:

• Task Type Filter: During the industry capability building process, we
first mapped medical task types to training task types and automatically
labeled the types of open-source data. Ultimately, we discarded irrelevant
data.

• Construction Method Filter: We traced the construction methods
of various open-source datasets (e.g.LLM-based, knowledge graph-based,
web crawling) as one of the reference standards for assessing data quality.
Through this method, we filtered out a large amount of data with content
errors and colloquialism issues.

• Data Length Filter: Using the length of questions and responses as
one of the reference standards for judging the information content of the
current data, we manually set reasonable length thresholds for different
open-source datasets. We discarded data that did not meet these length
expectations, thereby filtering out a significant amount of low-information-
density data and data with issues such as cyclic generation.
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In addition, we utilized internally accumulated data (e.g., physical exami-
nation reports, medical records, clinical diagnostic test questions) to produce
high-quality data for scarce medical task types in the open-source community.

Content Review: The data after initial filtering has a certain level of as-
surance regarding task type relevance and data quality. However, some content-
related issues (such as irrelevant responses, etc.) still cannot be entirely avoided.
Therefore, we need to further optimize and quality check the data with a
content-oriented approach. Specifically, we execute the following content in-
spection process:

• LLM-based question-answer matching score evaluation

• LLM-based regeneration based on original answers

• Review by professional medical team

3.2.4 Instruction Alignment Data for Application Skills

Abnormality Extraction of Medical Examination Reports: Abnormal-
ities extraction of medical examination reports is a critical task involving the
automated identification and extraction of abnormal findings. Unlike tradi-
tional entity and relation extraction task, this task presents unique challenges
as it requires the structured extraction of both entities and their relationships
simultaneously. Another significant challenge is the complexity of medical ter-
minology.

In practice, medical terminology and report writing are often non-standard
and inconsistent, which requires the model to have very strong medical knowl-
edge. Even state-of-the-art models like GPT-4 struggle with the complexity of
this task, with our testing indicating that GPT-4 achieves an F1 score of only
0.58.

To solve the problem, we designed a meticulously crafted task which helps
the model to understand the medical terminologies and their relationships bet-
ter. All data is annotated by professional doctors in the examination department
of the hospital, which guarantees quality and precision of the data.

Personalized Health Advice Generation: Personalized LLM response
generation holds the potential to offer substantial benefits for individuals in
critical areas such as medical.

In the medical examination scenario, a qualified health advice should com-
prehensively consider personalized factors such as the patient’s gender, age, oc-
cupation, marital and reproductive history, medical history, and family history.
Health advice specific to certain abnormalities often vary due to differences in
these factors. Unlike general health advice, the challenges of personalized health
lie in:

• Accurately capturing the relevance between personalized information and
examination abnormalities and reflecting this in the recommendations.

25



• The lack of high-quality training data for personalized examination rec-
ommendations in medical industry.

To address these issues, we sampled high-quality reports from the medical
examination reports of several top-tier hospitals to construct a dataset for per-
sonalized health advice. Throughout the process, a professional medical team
was responsible for the quality of the personalized health advice, with particular
attention to the relevance between personalized information and abnormalities,
as well as the accuracy and rationality of the advice.

We used these data for fine-tuning INF-Med and constructed an unseen test
set for performance evaluation. Ultimately, we surpassed GPT-4 and other
open-source LLMs in both accuracy rate and precision of personalized informa-
tion.

Quality Control of Medical Examination Reports: Due to the in-
volvement of multiple departments and the complexity of content, along with
significant individual differences, errors are common in health examination re-
ports. According to research, errors in health examination reports account for
more than 50

• Grammatical Errors: Such as extra or missing words, incorrect char-
acters, punctuation, sequence numbers, etc.

• Data Entry Errors: For example, incorrect entries for height and weight,
systolic and diastolic pressures switched, results entered for unchecked or
omitted tests.

• Errors in Imaging and Test Results: Such as uploading CT images of
the wrong part, incorrect reference values leading to erroneous conclusions,
errors in distinguishing left from right in ultrasound examinations.

• Errors by Chief Physicians: Such as missed diagnoses, inaccurate
health advice, or failure to comprehensively analyze based on the actual
conditions of the examinees.

Errors in health examination reports can lead to disputes, harming cus-
tomer loyalty and institutional reputation. Traditional quality control depends
on expert reviews, which are costly and slow. We explore using LLM for qual-
ity control of Medical examination reports to resolve issues like departmental
conflicts and missing conclusions.

To achieve this, we designed data mining strategies to identify problematic
reports from anonymized data. We calculate issue probabilities using two mod-
els, and validate data with annotations by professional doctors, and employ a
multiple-annotations strategy to ensure data quality. We use the COT strategy
to construct data and train our model, and then evaluate performance using
True Positive Rate (TAR) and False Positive Rate (FAR) metrics.
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3.3 Model Training

We conducted continuous training and instruction alignment training on INF’s
homemade 34B model (INF-LLM-34B) which was pretrained in-house from
scratch. In this section, INF-Med-CT refers to the base model obtained af-
ter continuous training on INF-LLM-34B, while INF-Med refers to the model
obtained after instruction alignment on INF-Med-CT.

3.3.1 Medical Domain Continuous Pretraining

Domain-specific further pretraining enhances the capabilities of large language
models within specialized fields [9]. Based on our INF-LLM-34B, we further
pretrained the model base on our domain dataset, got a cutting-edge medical
large language model, INF-Med-CT. By emphasizing the quality of medical
data, balancing it with selected general data and optimizing the training epochs,
INF-Med-CT achieves a robust enhancement of its medical domain capabilities
without losing its general capabilities.

3.3.2 Domain Instruction Alignment Training

In the supervised fine-tuning stage, INF-Med was initialized by the medical
foundation model INF-Med-CT, and optimized by the AdamW [19] optimizer
(β1 = 0.9, β2 = 0.95, ϵ = 10−8) with a learning rate of 1.0 × 10−5 for the
34B model. The learning rate increases to the peaking value with the cosine
learning rate schedule (3% warm-up steps) and then remains constant. We also
added general instruction alignment data to mix 1:1 with medical instruction
alignment data to maintain model general ability.

3.4 Model Evaluation

As mentioned in Section 3, we categorize INF-Med skills into three levels. To test
trustworthiness of INF-Med at each level, we used different evaluation datasets
and metrics.

3.4.1 Basic Skills Evaluation

Continuous Training: We tested our model’s basic skills in medical domain on
the United States Medical Licensing Examination (USMLE). The USMLE is
a rigorous, standardized exam that all physicians must pass to practice in the
United States. There are 3 steps of the exam, each step has specific focus
and unique objectives, and they together ensure a comprehensive assessment
of a medical professional’s competency. Step1 assesses the foundational medi-
cal knowledge of medical students, step2 assesses basic clinical knowledge and
step3 assesses the advanced clinical knowledge and it’s application. Our model
achieves impressive performance on USMLE sample example as shown in Ta-
ble 4: 68.91 on the USMLE step1, 73.33 on the USMLE step2 and 78.10 on
the USMLE step3, which surpasses larger model like Qwen1.5-72B-Base. This
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remarkable achievement indicates that our model has comparable performance
on those exams than human physicians, proofs the potential of our model to
assist in medical practice and education across different linguistic contexts.

Table 4: USMLE evaluation results for INF-Med-CT

Model Overall Average USMLE step1 USMLE step2 USMLE step3

Qwen1.5-72B-Base (5-shot) 67.56 65.57 68.33 68.61
INF-LLM-Base (5-shot) 67.02 62.18 68.33 70.07
INF-Med-CT (5-shot) 73.67 68.91 73.33 78.10

Instruction Alignment: With medical instruction alignment training data our
model gained a step further in USMLE, achieving scores as in Table 5. Our
model achieves 76.9 on the USMLE Sample Exam under 0-shot settings and
85.9 with the Medprompt method [23].

Table 5: USMLE evaluation results for INF-Med. Here “*” denotes cited from
report [22]. Qwen1.5-72B-Chat is the zero-shot results of the Qwen1.5-72B-
Instruct model using the same experimental setup.

Model Overall Average USMLE step1 USMLE step2 USMLE step3

GPT-4 84.31* 80.67 81.67 89.78
Qwen1.5-72B-Chat 67.3 64.7 69.2 67.9
INF-Med(Ours) 76.9 77.3 75 78.1
INF-Med-medprompt(Ours) 85.9 87.3 80 89.7

3.4.2 Industry-specific Skills Evaluation

To evaluate the industry capabilities of INF-Med, we conducted experiments
on various self-built datasets and public benchmarks. This section primarily
introduces the results achieved on MedBench [4]. Experiment results on self-
built datasets refer to Application Skills Evaluation.

MedBench is an open platform for the evaluation of Chinese medical large
models2, characterized by scientific rigor, fairness, and a comprehensive ap-
proach. It quantifies the capabilities of models across various medical dimen-
sions based on authoritative medical standards. MedBench includes the follow-
ing sub-tasks:

• Medical Knowledge QA: Including 6 sub-tasks, focuses on the model’s
abilities in medical exams, medical consultations, departmental triage, and
doctor-patient dialogues.

2MedBench leaderboard is accessible at https://medbench.opencompass.org.cn/

leaderboard. Due to the real-time nature of the leaderboard, scores and rankings may
change.
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Table 6: MedBench evaluation results for various subtasks

Abilities & Metrics GPT-3.5 GPT-4 INF-Med

Medical Knowledge QA

Med-Exam (Acc) 29.8 52.8 91.5
MedHC (Marco-Recall) 57.1 84.9 85.6
MedMC (Marco-Recall) 45.4 67.5 76.7
MedSpedQA (Marco-Recall) 56.7 75.5 77.2
MedHG (Micro-F1) 67.1 82.2 81.6
MedDG (Marco-Recall) 46.4 76.3 81.4

Medical Language Generation
IMCS-MRG (Marco-Recall) 64.5 71.2 72.2
DBMHG (Marco-Recall) 71.7 75.7 76.2

Medical Logical Reasoning

CMB-Clin (Marco-Recall) 72.1 87.2 83.7
DDx-basic (Micro-F1) 32.2 82.1 88.5
DDx-advanced (Micro-F1) 15.4 78.9 92.6
MedTreat (Marco-Recall) 36.7 51.3 51.9

Medical Language Understanging

CMeEE (Micro-F1) 23.9 30.9 52.5
CMeIE (Micro-F1) 16.5 26.5 54.1
CHIP-CDEE (Micro-F1) 33.6 45.2 79.7
CHIP-CDN (Acc) 87.3 90.0 99.3
CHIP-CTC (Acc) 46.5 52.0 84
SMDoc (Acc) 92.7 92.4 96.9

Medical Safety and Ethics
MedSafety (Acc) 37.4 47.5 82.8
DrugCA (Acc) 59.3 64.0 77.3

Overall Score - 49.9 75.5 90.4

• Medical Language Generation: Including 2 sub-tasks, focuses on the
model’s abilities to generate electronic medical records based on doctor-
patient dialogues.

• Complex Medical Reasoning: Including 4 sub-tasks, focuses on the
model’s abilities in clinical diagnosis, differential diagnosis, and treatment
generation.

• Medical Language Understanding: Including 6 sub-tasks, focuses on
the model’s capabilities in medical term extraction, term normalization,
and event extraction.

• Medical Safety and Ethics: Including 2 sub-tasks, focuses on the
model’s understanding of medical ethics and safety.

The comparison of our results with OpenAI public models on the leaderboard
is shown in the Table 6. It is worth noting that we ranked first on the MedBench
public leaderboard, and achieved the best scores in the dimensions of Medical
Logical Reasoning, Medical Language Understanding, and Medical Safety and
Ethics.

3.4.3 Application Skills Evaluation

Personalized Health Advice Generation We evaluated INF-Med’s ability
to generate personalized health advice using our self-built test dataset. We

29



adopt the Accuracy Rate (Acc) and the Precision of Personalized Information
(PPI) as evaluation metrics. The specific results are as shown in Table 7.

Table 7: Evaluation results for personalized health advice generation

Methods Acc PPI

GPT-4 40% 44.32%
Qwen1.5-72B-chat 35% 39.13%
INF-Med 45% 72.73%

We invite professional medical teams to evaluate personalized health advice,
and the result shows that INF-Med outperformed GPT-4 and Qwen1.5 across
the Acc and PPI metrics. The adoption criteria are strict, i.e., health advice is
only considered to be accepted if all relevant personalized information has been
mentioned and the medical expression is correct.

Quality Control of Medical Examination Reports As illustrated in
the Figure 11, this study proposes a comprehensive and real-time automated
quality control framework for medical examination reports. Upon completing
the medical examination report, the physician inputs the results and the report
into the medical model. The model generates real-time quality control results
and issues a pop-up alert if any quality control issues are detected. If an anomaly
is confirmed, the physician is required to re-optimize the report.

Figure 11: Medical report quality flow

In this scenario, INF-Med achieves a TAR of 70%, compared to GPT4 35%,
at the same FAR.
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Figure 12: Neuro-symbolic computing for medical examination report grading

3.5 Application Case Studies

3.5.1 ABUO Grading Task

Health examination reports usually include a combination of indicator values
(laboratory tests) and text descriptions (general check, physical examination).
Our task is to classify the abnormal results in the report into different levels (A,
B, U, and O), based on specific grading criteria provided. (1) Level A: abnor-
mal results that require immediate clinical intervention, as failure to intervene
could threaten life or lead to severe adverse outcomes. (2) Level B: abnormal
results that require reporting the process and expedited handling. (3) Level U:
abnormal results that require outpatient follow-up re-examination. (4) Level O:
abnormal results that do not meet A, B, and U. In particular, special attention
needs to be given to levels A and B during abnormal medical screenings, as they
require further medical intervention strategies.

3.5.1.1 Neuro-symbolic Computing

The grading task demands strict logical reasoning involving numerical values,
indicator values, and the process of logical reduction, areas where current LLMs
might still fall short. Additionally, beyond providing a grading result, it is
crucial to demonstrate the complete reasoning process for interpretability, which
is vital in medical applications. We view neuro-symbolic computing as an ideal
solution for addressing this issue.

Our neuro-symbolic approach consists of three steps, as illustrated Figure 12.
We first 1) translate the grading criteria text into the symbolic format expressed
in first-order logic automatically using INF-Med. During inference, we 2)retrieve
relevant premises, and use INF-Med to generate additional premises expressed in
symbolic format according to patient medical examination report and abnormal
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results. Finally, 3) These expressions are then offloaded to an in-house symbolic
engine, Ponens, which performs deductive inference in a strict symbolic manner
and outputs the whole reasoning process in addition to the conclusion.

Symbolic Formalization of Grading Criteria: We use the 202301 ver-
sion of the health examination grading standard. This standard includes grading
criteria for three levels: A, B, and U. Each level has multiple criteria expressed
in a combination of qualitative and quantitative terms.

We leverage INF-Med to automatically translate text into a symbolic for-
mat by exploiting their in-context learning capabilities. Specifically, we carefully
selected 5 examples that encompass both qualitative and quantitative criteria
across all three grading levels, we also provide human-verified symbolic formu-
lation, i.e., the Prolog program to include as a reference answer for in-context
learning. Below is an example translation of one level A criterion.

Natural language context
Level A: Platelet count ≤ 30.0× 109/L (first time) or significant bleeding ten-

dency

(A类：血小板计数≤30.0× 109/L（首次）或有明显出血倾向)

Ponens

levela : −platelet count(patient, X), X ≤ 30; bleeding tendency(patient).

As a result, we obtained more than 300 premises as our database upon which
our decisions are based. We sampled a small portion for annotation to verify
the correctness of the translations, achieving an accuracy rate of over 90%.

Neuro-symbolic Inference In addition to converting grading criteria into
premises, we need to extract additional premises from the medical report spe-
cific to the patient at inference time. One challenge we faced was aligning our
translations with those in the premise database to ensure correct logical deduc-
tion in stage 3. Our solution involves first retrieving candidate premises from
the database created in 3.5.1.1, based on the medical examination report, and
extracting abnormal results using an off-the-shelf embedding model. We then
constrain the INF-Med to select from these existing predicates while extract-
ing corresponding numerical and indicator values consistent with the report.
Specifically, we provide a few in-context examples to help the model understand
what to output. We also allow the model to return void none of the candidate
predicates are directly mentioned in the report. Finally, we parse the output
and extract additional premises from the report to complete the symbolic for-
malization process.

Below is an example of a premise generated by INF-Med from a medical
report and abnormal results. We observed that INF-Med can discern nuanced
differences in medical descriptions, such as distinguishing between a pulmonary
ground-glass nodule and a suspicious pulmonary nodule, and can also handle
unit conversions for numerical values properly. To minimize uncertainty in
translation, we employ 3-way majority voting to select the final premises.
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Input:
Abnormal results:

• 1. Right ethmoid sinusitis (右侧筛窦炎.)

• 2. Ground-glass nodule in the apicoposterior segment of the left upper
lobe, 0.7 cm (左肺上叶尖后段磨玻璃小结节 0.7cm)

• 3.A few fibrotic foci in both lungs (双肺少许纤维灶)

Candidate predicates:

• Mediastinal nodule (binary)

• Sinoatrial conduction (binary)

• Pulmonary ground glass nodule (num): unit mm

• Suspicious single or multiple pulmonary nodular lesions (binary)

Output
Pulmonary ground glass nodule(patient, 7). % source 2

Symbolic Inference We pass all premises from the database, those derived
from the medical examination report as well as the conclusion to our in-house
symbolic engine, Ponens for logic reduction (details introduced in 2.3.2). Our
process ensures the faithfulness of our reasoning process, i.e., only derive con-
clusions based on provided grading criteria. The logic engine returns the result
grading as well as its detailed reasoning process for visualization and full ex-
plainability.

3.5.1.2 Experiments

We collected 94 sessions of medical examination reports that contained abnormal
results, covering both test sessions and imaging sessions. All of our data are
sampled from real health examination scenarios. We annotate the data at each
abnormal result level. The annotators are physicians from top-tier hospitals
in China. Each sample is initially labeled by a chief physician, followed by a
secondary review by medical experts to ensure the label quality the data.

3.5.1.3 Baselines

We compare our model against two chain-of-thought technique (COT) baselines
that depend solely on LLMs for logical reasoning: 1) Naive LLM, where we
do not provide extracted abnormal results, only the whole report session and
original ABU grading criteria in natural language format. 2) LLM + abnormal
results, where extracted abnormal results are provided to reduce potential noise
and for a fair comparison with our model. For both baselines, we employ COT
to ask the model to output its reasoning process step-by-step. We separately
evaluate the settings that GPT-4, and INF-Med serve as the underlying LLMs.
To ensure a fair comparison, we use a decoding temperature of T = 0.8 for all
experiments. We evaluate the accuracy at the session level, using a strict set
match for comparison with the gold label. We also evaluate the accuracy at
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per abnormal result level (each session can include multiple abnormal results),
with an emphasis on A and B grading since they are more severe and have less
representation in the dataset.

3.5.1.4 Results and Discussion

We present the accuracy at both the session level and the abnormal results level
in Table 8. Our neuro-symbolic approach significantly outperforms two LLM-
only baselines in both session accuracy and per abnormal accuracy. Specifically,
when using INF-Med as the underlying model, our method surpasses the LLM-
only counterpart based on GPT-4 by +12 points in session accuracy and +21
points in per abnormal accuracy. Additionally, we conducted a detailed analysis
of precision, recall, and F1 scores for A and B levels, which comprise about
10% of the dataset, yet misgrading these levels is considered a more serious
error by physicians. Our results show that our model achieves high precision
(0.866) for the A and B categories, with a slightly improved recall (0.542).
These findings further confirm the advantage of neuro-symbolic computing in
this application, particularly in maintaining high accuracy and reliability for
critical classifications.

Table 8: ABUO results for baseline models and neuro-symbolic model

A and B grading
ACC @session ACC @abnorm Precision Recall F1

Native gpt4 0.287 - - - -
+abnormal 0.636 0.652 0.375 0.563 0.450

(INF-Med)ours 0.759 0.862 0.538 0.583 0.560
ours 0.800 0.898 0.866 0.542 0.667

3.5.1.5 Error Analysis

We note distinctive failure modes for LLM-only baselines and neuro-symbolic
approach. We first abbreviated examples of common LLM-only baselines below.

LLM-only approach tends to make hallucinations. One common mis-
take for the LLM-only approach is hallucinating based on criteria that do not
exist in the original guidelines. This happens often when there is no correspond-
ing guideline for certain abnormal results for a specific grading. For example,
the below example shows hallucination at steps 4, 5, and 6, based on criteria
that do not exist in the original (we simplify the whole COT output by show-
ing a snippet only on the hallucinated part). Even though it found the correct
reference criteria, the conclusion was derived on the basis of the hallucinated
criteria.

Abnormal findings:
Uric acid is elevated; Test Name: Uric Acid; Indicator: ↑; Reference Range:
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155-357 μmol/L; Value: 582.0 μmol/L)

COT:
... Step 3: The uric acid level of 582.0 μmol/L does not meet the Class A
standard, which requires levels to be >600 μmol/L. (correct)
Step 4: The uric acid level of 582.0 μmol/L does not meet Class B stan-
dards.(hallucinated)
Step 5: The uric acid level of 582.0 μmol/L meets Class U criteria as it is
greater than 445 μmol/L but below the threshold for Class B. ((hallucinated)
Step 6: Therefore, the elevated uric acid is classified under Category U. (hallu-
cinated)

Ref: Level A: Renal FunctionBlood: Uric Acid: > 600 μmol/L

Conclusion: U

COT makes incorrect logic deductions when dealing with multi-
step reasoning Another common type of mistake we find for the LLM-only
model is an error in logic deductions with composite criteria. For example,
Multiple cystic lesions in the liver, with the largest diameter about 61mm is
classified as level O, with COT correctly concluding that a diameter of 61mm
is less than 10cm, thus does not meet level B criterion. However, it does meet
one criterion in level U related to liver cyst with diameter ≤ 5cm, thus should
be classified as level U.

We note our neuro-symbolic model significantly reduces the two types of
errors mentioned above, thanks to the rigorous logic reduction process resulting
from logic engine execution. However, the neuro-symbolic approach sometimes
falls short in capturing implicit and vague information, e.g., criteria regarding
ECG findings are often accompanied with the comment: to be correlated with
clinical and related examinations, which is hard to translate to the logic for-
mulation. This could result in missing information in the premises database
leading to inaccurate conclusions.

3.5.1.6 Visualization

Finally, using the symbolic engine Ponens, we can retrieve all the reasoning
steps, and visualize them at our specially designed front end for full explain-
ability. We show one example in Figure13.

In summary, we apply a neuro-symbolic approach to leverage the strength
of both LLM and symbolic computing to a medical grading task. At its core,
we trade off the flexible expression space of NL for syntactically strict logic
formulas in problem formulation, allowing us to use rigorous symbolic algorithms
implemented in our logic engine Ponens for reasoning. This process significantly
reduces the hallucination and error in multi-step reasoning, as well as improves
the transparency of the system.
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Figure 13: Reasoning paths

3.5.2 Medical Knowledge Assistant

Another application of our INF-Med is Medical Knowledge Assistant, a tool
designed for professional doctors and medical students. For doctors, it serves
as a reliable reference tool, providing quick access to evidence-based medical
information. For medical students, it acts as an educational resource, helping
them grasp complex medical concepts and stay updated with current medical
knowledge.

By leveraging the powerful Inf-Med medical language model, a comprehen-
sive professional medical knowledge base, a Retrieval-Augmented Generation
(RAG) system, and traceable long-context document question answering, Med-
ical Knowledge Assistant ensures reliable, evidence-based responses, enhancing
the accessibility and accuracy of medical information.

• Medical Knowledge Base: The foundation of the Medical Knowledge
Assistant is a vast repository of medical information, including the lat-
est medical guidelines, drug descriptions, and other publicly available re-
sources. This extensive database ensures that the AI has access to most
authoritative and comprehensive medical knowledge.

• Retrieval-Augmented Generation (RAG): RAG combines the strengths
of information retrieval and text generation. When a query is sent to the
assistant, the RAG system retrieves relevant documents from the knowl-
edge base and uses them to generate a coherent and contextually accurate
response. This hybrid approach enhances the reliability of the information
provided.

• Traceable Long-Context Question Answering: One of the standout
features of the Medical Knowledge Assistant is its ability to provide an-
swers based on the long reference that are not only detailed but also cite
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their sources. This traceability ensures that users can verify the infor-
mation and refer to the original documents for further reading, thereby
enhancing the credibility of the responses.

The trustworthiness and reliability of the Medical Knowledge Assistant are
paramount. By leveraging the latest medical guidelines, the assistant ensures
that all information provided is grounded in the most current and credible
sources. The use of RAG further enhances this reliability by ensuring that
each answer is not only generated based on the language model’s capabilities
but also from relevant and authoritative sources,as shown in the Figure14 below

Figure 14: INF-Med application: medical knowledge assistant

4 INF-LLM for Finance

4.1 High-quality Finance Data for Continuous Training

We provided a comprehensive set of diverse structured and unstructured finan-
cial data and general data for continuous training our financial LLM. In serving
this mission, we have curated a set of financial documents that were either
created internally or acquired from external sources. We utilize this extensive
collection of curated and maintained documents to create our financial datasets,
which consists of financial news, financial books, financial reports, research re-
ports and announcements of listed companies, and financial exams relevant to
financial markets. Constructing the financial dataset mainly involved in the
following three steps:

• Data crawling and collection: We collect our raw data from various
sources, such as websites, journal articles, authoritative guidelines, books,
educational materials, and etc. We use some classic OCR technology to
parse some types of materials such as some pdf books into structured
information.

• Data cleaning and filtering: Although pretraining data for LLMs is
sourced from authoritative and up-to-date sources, some noise remains
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Dataset sources Tokens for training language

financial books press 5.4 en
financial reports press 0.392 zh
research reports web-scraped 0.5 zh
cfa-koolearn-seed web-scraped 0.388 zh
financial exams web-scraped 1.4 en/zh
financial news web-scraped 4.3 en/zh

webtext-cc-like-finance data augmentation 7 en/zh

Table 9: An overview of financial corpus for continuous training procedure.

Dataset sources Tokens for training language

refine-cc web-scraped 0.9847 en
ultratextbook press 5 en
openhermes web-scraped 0.72 en

wiki web-scraped 1 en
paper-cnki web-scraped 4 en
book-libgen web-scraped 4 en
baidu-baike pressd 4 zh
cosmos web-scraped 10 en

instructions web-scraped 3 en
open-web-math web-scraped 8 en

Table 10: An overview of the general corpus for continuous training procedure.

when adapting this data for training. Enhancing control and improving
data quality have become essential factors for the success of LLMs. This
study has developed a comprehensive data quality control process focused
on elevating the standards for data quality, which mainly involved in 3
steps: data filtering by some rules such as whether contain ads in websets
or unuseful urls, data control by some quality signals, data deduplicated
by minihash algorithm.

• Data augmentation: Besides the collected raw data, experiments demon-
strate that data augmentation also improve LLM’s performance. We aug-
mented our data by some approaches. For instance, we extract knowledge
from the exams by prompts engineering based on LLM. Moreover, using
questions in some exams as query, we recall the relevant knowledge from
financial websets in common crawl dataset to supplement our knowledge.

More details of the data we used in the experiments of this study can be
found in Table 9.

Besides the financial data, we also collect plenty of general data to improve
the generalization ability of our model. We use some widely known and available
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public datasets in our training corpus. For training LLMs, it is crucial to scrape
news from a variety of sources to capture different writing styles, terminologies,
and perspectives. Digitized literary works also provide a wealth of linguistic data
spanning centuries. More details of the corpus data we used in the experiments
of this work can be found in Table 10.

4.2 Data for Instruction Alignment

In this section, we will present our curated financial instruction tuning dataset.
Notably, our dataset is characterized by a combination of high-quality and di-
verse instructions, encompassing both general complex instructions and those
tailored specifically for financial tasks. This aspect is paramount in the training
of large-scale financial models, as it provides a rich and varied foundation for
the model to learn from.
General Instructions We utilized a vast amount of open-source instruction
data to train the base model. We gathered approximately 10 million open-
source multi-lingual instruction fine-tuning data, processed them through par-
allel cleaning and rigorous filtering. The aim of this stage was to cover the
diversity of instructions and enhance the model’s ability to follow instructions.
Furthermore, we augmented our training dataset by synthetically generating a
substantial portion of more complex instruction data through a combination of
automated and semi-manual processes.
Financial Instructions The financial instructions dataset is underpinned by a
suite of critical tasks, including financial examinations like the CFA, classifica-
tion, information extraction, question answering (QA), reading comprehension,
and summarization. Classification tasks are essential for sentiment analysis in
financial texts, utilizing datasets such as the Financial Phrase Bank (FPB) for
labeled sentiment and FiQA-SA for sentiment prediction. Additionally, infor-
mation extraction plays a vital role in identifying entities and events within
financial texts, providing context and insights that are invaluable for financial
decision-making. Question answering in finance is pivotal, with Financial QA
focusing on user queries about financial topics and Table QA concentrating on
extracting information from structured financial data in tables. Collectively,
these tasks harness the power of natural language processing to enable more
efficient and informed financial analysis and decision-making.
Financial Application Instructions The Financial Application Instructions
comprises two products we’ve developed: the Financial Report Review and the
Knowledge Assistant. The Financial Report Review is crafted for financial an-
alysts, using large language models to streamline financial report writing by
automating framework generation, commentary, and incorporating both stan-
dard and unique financial metrics. It enhances the report production process
with large language models, blending AI capabilities with human expertise. The
Knowledge Assistant, designed as a personalized tool for financial customers,
employs large models for knowledge management, facilitating search and or-
ganization of financial information. It performs classification to interpret user
intent, refines data through extraction tasks, and generates text for reading com-
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Table 11: A summary of datasets from different sources

Type Source Description

General In-
structions

Open-source Include a wide range of instructions,
covering various domains and scenarios,
and are annotated with relevant labels
or metadata

Synthetic Typically designed to cover a specific
set of tasks of financial domain, and are
crafted to be concise, clear, and unam-
biguous

Financial
Instructions

Exam Financial examination datasets, includ-
ing CFA.

Classification Financial sentiment analysis, news
headline classification, etc.

Information Extraction Name Entity Extraction, event extrac-
tion, etc.

Question Answering financial question answering, table
question answering

Numerical Reasoning Complex numerical reasoning in finan-
cial data

Reading Comprehension Understand and analyze financial doc-
uments, such as financial reports, re-
search reports, and public announce-
ments, and provide answers to user
queries

Summarization Condense and summarize vast amounts
of financial data into meaningful and ac-
tionable insights

Financial
Application
Instructions

Financial report review Financial indicator extraction, unique
metric extraction, the generation of
writing frameworks, metric filling, and
review creation

Knowledge Assistant Intent classification, data pathway se-
lection, company name extraction, time
extraction, etc.
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prehension and summaries, offering tailored, concise insights. Together, these
products represent our practical application of AI in the financial sector, aimed
at improving efficiency and decision-making.

4.3 Training

Further domain-specific pretraining significantly boosts the proficiency of large
language models in their respective fields. We chose the open-source Qwen2-
72B-Base model, and conducted continuous training using our proprietary dataset
tailored to our domain. This process has yielded a state-of-the-art financial lan-
guage model, named as INF-Fin-Base, which demonstrates remarkable perfor-
mance within the financial sector. In detail, we set the maximum learning rate
to 1e-4 and used the cosine decay learning rate scheduler with linear warmup.
The learning rate is warmed up in the first 1000 steps. The final learning rate
is 1e-5. We trained our model for one epoch. We used the AdamW optimizer,
and set β1 to 0.9, β2 to 0.95, and weight decay to 0.1.

We further fine-tuned INF-Fin-Base using the proprietary instruction dataset
that covers various NLP tasks. For the chat model INF-Fin, we fine-tuned with
1200 steps, utilizing the AdamW optimizer. The batch size is set to 32, the
initial learning rate is 5e-6, and the weight decay is 0.1. The learning rate is
linearly warmed up in the first 240 training steps. The maximum input text
length is set to 4096. The training process was conducted on 8 A100 80GB
GPUs.

4.4 Model Evaluation

4.4.1 Evaluation Dataset

To objectively evaluate the capabilities of current industry-leading models in
financial tasks, a self-constructed dataset, along with two mainstream open-
source financial datasets, were selected. The details of the dataset are shown in
Table 12.

• CFA is the Chartered Financial Analyst (CFA) exam dataset developed
by Shanghai Academy of Artificial Intelligence for Science (SAIS) to evalu-
ate LLMs’ financial analysis and investment management knowledge. This
dataset consists of two levels of CFA exam questions, each with its own fo-
cus and set of topics. In detail, the Level 1 exam consists of 400 questions,
the Level 2 exam contains 300 questions.

The Level1 Exam comprises a broad spectrum of fundamental concepts
and principles, assessed through single-choice questions that cover top-
ics such as Ethical and Professional Standards, Quantitative Methods,
Economics, Financial Reporting and Analysis, Corporate Finance, Eq-
uity Investments, Fixed Income, Derivatives, Alternative Investments, and
Portfolio Management.
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Dataset Number of Items Language Type

CFA 700 en single-choice
FinanceIQ 7123 zh single-choice
FinEval 1151 zh multiple-choice

Table 12: An overview of financial evaluation dataset.

The Level2 Exam introduces more complex question formats, including
text, tables, charts, and financial statements, requiring LLMs to interpret
and analyze the data to answer questions accurately.

All the questions are based on official textbooks written by CFA quali-
fied practitioners, mock questions by training institutions, and rewritten
questions based on retelling CFA exam questions with participants.

• FinanceIQ [8] is organized into 10 major financial categories and 36
subcategories, covering authoritative exams such as Certified Public Ac-
countant (CPA), Tax Advisor, Economist, Banking, Fund, Securities, Fu-
tures, Insurance (CICE), and Financial Planner. Additionally, it includes
the ”Financial Mathematics” subject from actuary exams to test high-
difficulty financial mathematics problems.

• FinEval [58] is a benchmark designed to evaluate financial domain knowl-
edge in large language models (LLMs), is based on quantitative founda-
tional methods. It comprises 8,342 question types closely aligned with
real-world application scenarios, including multiple-choice questions, sub-
jective open-ended questions, objective short-answer questions, reasoning
planning, and retrieval-based QA. These questions encompass topics such
as Financial Academic Knowledge, Financial Industry Knowledge, Finan-
cial Security Knowledge, and Financial Agent. To ensure a comprehen-
sive assessment of model performance, FinEval integrates both objective
and subjective evaluation criteria, such as Accuracy, Rouge-L, and ex-
pert evaluation guidelines, employing zero-shot and few-shot methods for
evaluation.

4.4.2 Experimental Results

In this experimental section, we assess the performance of three models, GPT-
4 Turbo, Qwen2-72B and INF-Fin, across various financial metrics, including
CFA Level 1 (CFA-L1), CFA Level 2 (CFA-L2), FinanceIQ, and FinEval. The
results are presented in Table 12, which offers a comprehensive evaluation of the
models’ capabilities.

Regarding the CFA metrics, which focus on evaluating financial analysis
performance, we observe that INF-Fin achieves the highest scores across all
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Model CFA-L1 CFA-L2 FinanceIQ FinEval

GPT-4 Turbo 72.250 55.000 65.710 70.460
Qwen2-72B 65.250 49.667 77.000 86.707
INF-Fin 77.750 57.333 97.782 92.441

Table 13: Comparison of model performance on financial benchmark datasets.

categories. Specifically, INF-Fin’s CFA-L1 score of 77.750 is significantly higher
than both GPT-4 Turbo’s 72.250 and Qwen2-72B’s 65.250, indicating a superior
ability to perform basic financial analysis tasks. Similarly, INF-Fin’s CFA-
L2 score of 57.333 outperforms the other two models, suggesting a stronger
proficiency in handling more complex financial calculations.

Focusing on the FinanceIQ metric, which evaluates the models’ financial
intelligence, INF-Fin again demonstrates superior performance with a score of
97.782. This score is significantly higher than GPT-4 Turbo’s 65.710 and Qwen2-
72B’s 77.000, highlighting INF-Fin’s enhanced capability in understanding and
analyzing financial concepts and scenarios.

The FinEval metric, which measures the overall financial evaluation perfor-
mance of the models, exhibits a similar trend. INF-Fin achieves the highest
score of 92.441, significantly outperforming GPT-4 Turbo’s score of 70.460 and
Qwen2-72B’s score of 86.707. These results further confirms INF-Fin’s compre-
hensive superiority in financial tasks, likely due to its specialized design and
training for financial analysis and evaluation.

In summary, the experimental results demonstrate that INF-Fin outperforms
both GPT-4 Turbo and Qwen2-72B across all evaluated financial metrics. This
indicates that INF-Fin’s specialized design and training have effectively enabled
it to achieve superior performance in financial analysis and evaluation tasks.

4.5 Application Case Studies

4.5.1 Finance Report Commentary

Financial professionals today often face the daunting task of sifting through
extensive data to extract meaningful insights—a process that can be time-
consuming and prone to human error. To address the growing need for effi-
cient, accurate, and insightful analysis of financial reports and alleviate these
challenges, we developed the Financial Report Commentary (FRC) application,
leveraging our advanced INF-Fin. This application automates the generation of
comprehensive commentary on financial reports, statements, and related docu-
ments, providing users with detailed, contextually accurate insights that high-
light key indicators, trends, and significant changes. The FRC tool not only
enhances the efficiency and accuracy of financial analysis but also empowers
analysts, investors, and advisors to make more informed decisions. The frame-
work of our application is shown in Fig 15. In the following paragraphs, we will
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introduce how we emulate the precision and insight of professional analysts in
our reports and ensure the content remains trustworthy.

Figure 15: Framework of Finance Report Commentary

Paradigm Writing

When drafting a Financial Report Commentary, the primary considerations
should be the content to be included, the indicators to be covered, and the
commentary viewpoints to be provided. In this application, we implemented
a generalizable writing framework that is based on the extraction of writing
style and key contents from historical financial documents and utilizes them for
writing and polishing new financial documents in similar patterns. We refer to
this process as Paradigm Writing. The framework consists of three main steps,
each deeply integrated with INF-Fin:

1. Financial Information Extraction: Leveraging the powerful and precise
financial information extraction capabilities of INF-Fin gained through
instruction alignment, we can employ a model-native approach to extract
valuable key indicators and business segments worth commenting on from
past commentaries written by analysts for each company, which can be
done both online and offline. The indicators are usually classified into
financial indicators and company-featured indicators to serve the RAG
process better. The generated comment questions are designed to be neu-
tral and unbiased, avoiding strong ties to specific events, which allows for
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reuse in various contexts. In addition, we’re able to understand the ana-
lysts’ habitual writing order and content arrangement through this step.
For example, when to insert descriptions of cost efficiency and when to
include a risk analysis of the company, which is highly beneficial for the
subsequent polishing of our writing style and content organization.

2. RAG Writing : After analyzing the writing patterns of past analysts, based
on the company’s financial reports and announcements within the current
reporting period, we recall the relevant content and utilize INF-Fin to
write a preliminary commentary through Retrieval-Augmented Genera-
tion (RAG). Given financial experts’ prior knowledge, we select the most
suitable data sources to maximize the quality of the material and enhance
the overall writing quality and trustworthiness. For writing on differ-
ent types of indicators, different retrieval indices are utilized as sources
for RAG. For instance, for common financial indicators, we opt to recall
contents from financial statements like the income statement or balance
sheet, instead of searching tables in the parsed financial report pdf. Sim-
ilarly, when writing commentary questions, we select specific sections of
the financial report to reduce retrieval difficulty. In certain reporting pe-
riods where financial reports have little content, we increase the weight of
sourcing from company announcements to enrich the content.

3. Style and Logic Polishment : After obtaining the preliminary draft, we use
a few-shot in-context learning (ICL) approach to polish the style and logic
of the commentary. The few-shot format allows us to express our writ-
ing style requirements and impose constraints on the model’s behavior in
specific situations in a more intuitive and configurable manner. INF-Fin,
trained with similar scenario data, exhibits better adherence to guidelines
in few-shot polishment scenarios. The few-shot examples can come from
carefully selected text pairs written by professional analysts before and
after polishment, or they can be directly extracted from historical com-
mentary in the first step. After data anonymizing (to prevent the model
from copying), historical examples can be used as awesome references. The
polished commentary is significantly smoother and more logically coherent
than before the polishment. Additionally, the amount of redundant and
verbose language produced by the model will be notably reduced, making
the output closer to the style of the desired analyst and more human-like.

Paradigm Writing can also be effectively extended to other writing scenarios
in the financial domain. Besides financial report commentary, it can be used
for earnings call summaries, prospectuses, industry trend analyses, regulatory
compliance reports, etc. We consider its application in commentary as a starting
point and are exploring its deployment in a broader range of scenarios.
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Figure 16: Showcase of Chinese A-Share Commentary

Trustworthy Generation

The most crucial aspect of financial writing is the trustworthiness of the con-
tent. Next, we will introduce how we apply the model’s trustworthy capabilities
to Indicator Commentary, Opinion Commentary, and through neuro-symbolic
reasoning.

• Indicator Commentary

1. Context Filtering : According to the study by F. Cuconasu et al. [5],
apart from the truly relevant documents we need, related documents
cause more performance degradation in LLM’s output compared to
completely irrelevant documents as distractors. This is even more
critical in financial scenarios, where numerical accuracy is of utmost
importance, especially given the complex, cross-temporal, and cross-
industry indicators, which are extremely prone to confusion. To
address this issue, we leverage the financial information extraction
capability of INF-Fin to identify the required reporting period and

46



relevant industry/product. Based on it we can collect as many re-
lated but not needed distracting indicators and exclude them or lower
the ranking during the context retrieval phase.

2. Trustworthy Numerical Filling : The accuracy of numerical filling pri-
marily stems from the inherent capabilities of the INF model. As
mentioned in Section 4.2, the extensive Financial QA training data
used in the model’s instruction alignment, especially Table QA in
this case, has endowed the model with powerful abilities to clearly
distinguish between different financial indicators. Experiments have
demonstrated that INF-Fin outperforms general LLMs in numerical
filling and has a significant advantage in differentiating similar fi-
nancial indicators or indicators from different reporting periods. In
addition, supplementary training data has been included to guide the
model that, when asked to write an indicator unfounded in the source,
it should follow the instructions but replace the actual values with
N/A. This approach ensures that the user’s writing requirements are
met while maintaining the trustworthiness of the content.

3. Post-fill Verification and Validation: After initially generating com-
mentary on the indicators, we perform style and logic polishment
on the results. If any numbers are found to be unreasonable, the
corresponding indicators will be discarded, and the sentences will be
revised accordingly. Once the model has completed the generation,
we conduct a final validation with the writing sources. If any of the
corresponding values do not exist in the source materials, the indica-
tors will either be automatically discarded or replaced with N/A to
maintain overall trustworthiness.

• Opinion Commentary

The technical points of trustworthiness in Opinion Commentary are closely
aligned with those in the Indicator Commentary. Both rely on pre-filtered,
high-quality data sources and the robust native capabilities of the INF-Fin
to ensure accurate understanding and citation of the original material. A
key technical highlight is its capability for source tracing and verification of
the original content. Since opinion statements must be based on factual
descriptions from financial reports or announcements, supplemented by
simple causal inferences, any hallucinations or fabrications by the model
are intolerable. We perform N-gram similarity checks between the model-
generated content and the sentences from the source materials. Sentences
that do not meet the set similarity threshold are deleted to ensure trace-
ability and accuracy.

• Neuro-symbolic Reasoning

Based on the neuro-symbolic computing engine introduced in Section 2.3,
we utilized neuro-symbolic reasoning in both the commentary generation
and quality control stages. During the generation phase, we rely on prior
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knowledge provided by financial experts to reason about specific indica-
tors, such as whether they meet a certain threshold or reflect a particular
trend, and then derive conclusions. We use this reasoning process and
the derived conclusions as writing material, which we feed into the LLM.
This approach ensures that the generated descriptions are more logical
and trustworthy. During the quality control stage, we reuse the key infor-
mation extraction capabilities of INF-Fin to extract key information back
from the generated content. We then apply expert-written quality control
rules to verify the integrity and logic of the indicators and commented
viewpoints.

Figure 17: Showcase of U.S. Stock Commentary

Show Cases

We present a Chinese-written A-share financial report commentary and an
English-written U.S. stock financial report commentary generated with our FRC
application and INF-Fin. Both are generated based on the same framework, us-
ing different language versions of prompts.
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China A-Shares Commentary

Fig 16 presents our generated commentary on 振华重工 ’s 2023 annual financial
report. In this commentary sample, we focused on four main sections: oper-
ational performance, core business, cost efficiency, and future strategy. The
subjects we pick are all based on past analysts’ reports on this company. For
indicators in sections 1 and 3, the data mainly comes from official financial
statements, the numbers of core business are mainly derived from the annual
financial report and are all traceable. And there are always comments after the
stats, expressing the opinion derived from the numbers, either directly from the
report or through neuro-symbolic reasoning.

U.S. Stock Commentary

For the U.S. Stock Commentary showcase shown in Fig 17, we pick the lat-
est 1QFY25 financial report of NVIDIA. Our primary writing materials are
sourced from the latest 10-Q SEC Filing. To supplement with non-GAAP data
and content, we have also included NVIDIA’s Q1 CFO Commentary materials
in the writing resources. When extracting from historical research reports, we
also found that analysts tend to insert comparisons with consensus or expec-
tations from Bloomberg or other institutions. However, since we currently do
not have access to these sources and to maintain overall trustworthiness, we
don’t have them included. The subjects included are different from the Chinese
commentary, due to different past commentaries consumed by the model.

4.5.2 Financial Knowledge Assistant

4.5.2.1 Overview

In the vast realm of financial knowledge, precisely excavating and interpreting
deep insights poses a significant challenge. To address this challenge, we metic-
ulously designed and constructed a highly specialized and accurate Financial
Knowledge Assistant, based on the LLM Native architecture, dedicated to de-
livering exceptional financial information services. Our Knowledge Assistant
comprises three key architectural components: the Query Understander, the
Evidence Finder, and the Answer Generation and Optimization Engine. These
components work in tandem to ensure efficient information retrieval and precise
responses.

Furthermore, our Knowledge Assistant includes the innovative Query Under-
standing All-in-One Model, which significantly enhances the understanding of
user intent through an integrated query rewriting method, thereby improving
the recall rate for relevant unstructured documents. In addition, the Semi-
structured for Knowledge Base strategy for semi-structured methods has en-
hanced retrieval efficiency and robustness. The Long-Context Generation cata-
log tree strategy ensures that the generation of long texts is both structured and
content-rich. Lastly, the Answer Tracer guarantees that the generated answers
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are transparent and traceable.
Our Financial Knowledge Assistant provides researchers and professionals

in the financial domain with a reliable, efficient, and transparent information
service platform, representing an advanced tool for knowledge exploration in
the field of finance.

4.5.2.2 Architecture

Figure 18: Architecture of Financial Knowledge Assistant

The architecture of the Financial Knowledge Assistant aims to achieve effi-
cient and accurate processing and analysis of financial information. The primary
architectural components of the system and their workflows as shown in Figure
18.

Firstly, Financial Knowledge Assistant analyze the user’s queries in depth,
identifying its underlying intent, including the identification of the company or
industry, definition of the time range, and accurate parsing of pronouns. Con-
duct contextual analysis to understand industry terms, professional vocabulary,
and common abbreviations, ensuring information is correctly linked to real-
world entities. After comprehending the query content and context, if the ques-
tion is unclear, continue interacting with the user to confirm the query intent,
avoid misunderstandings, and reconstruct the original query based on the under-
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standing of the user’s intent. Then, dynamically select and invoke appropriate
tools or algorithms based on the user’s query. These tools include computation
tools, plotting tools, and machine learning algorithms, all seamlessly integrated
with the agent, supporting complex data analysis and visualization needs. The
agent can also access a knowledge base, which stores a wealth of financial data
and information that can be retrieved and referenced when generating answers.
Finally, based on the query and the data retrieved, quickly generate an initial
answer. Then use self-critique capabilities to evaluate and optimize the answer
by supplementing missing information, correcting logical errors, and enhancing
readability and accuracy, ensuring its accuracy and completeness. After receiv-
ing the answer, the user can provide feedback through a feedback loop, which
the Financial Knowledge Assistant uses to learn.

4.5.2.3 Key Features

1. Query Understanding All-in-One Model The Query Understand-
ing All-in-One Model is an efficient and comprehensive method designed
for financial knowledge assistants to understand user queries effectively.
This model encompasses fundamental features such as time and entity
extraction, SQL querying, and introduces an innovative query rewriting
technique. We employs an integrated understanding strategy that avoids
the intricate decision-making process of LLM Agents in selecting specific
rewriting methods. Moreover, our research indicates that extracting key
information before performing query rewriting is beneficial. This tech-
nique significantly enhances the understanding of user intent, thereby im-
proving the recall rate of relevant unstructured documents. This is par-
ticularly crucial in the financial sector, where data typically includes a
vast amount of unstructured content like news reports and market anal-
ysis. The Query Understanding All-in-One Model not only improves the
efficiency and accuracy of financial knowledge assistants in understanding
user queries but also provides financial professionals with more reliable
and efficient information services. Additionally, it offers new perspectives
and methods for prompt engineering in other fields.

2. Semi-structured for Knowledge Base In the process of constructing
the Financial Knowledge Assistant, we recognized that while the Query
Understander is crucial for enhancing retrieval effectiveness, its robust-
ness is constrained by the quality of text embedding and tokenization.
To overcome these limitations, we adopted a semi-structured processing
strategy to enhance the retrieval efficiency and robustness of texts in the
index database. Initially, we identified key information within the text,
such as dates, company names, industry terms, locations, industry back-
grounds, and market environments. This aids in precisely matching user
queries with relevant information in the knowledge bases, ensuring that
retrieval results are highly relevant to user needs. To address deeper align-
ment issues, we utilized methods of hypothetical question construction
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and text summarization. By constructing potential query scenarios of-
fline and compressing lengthy texts into concise summaries, we achieved
a higher level of alignment. These semi-structured measures have im-
proved retrieval accuracy and enhanced the robustness and reliability of
the Financial Knowledge Assistant in handling complex financial queries.
This constitutes a comprehensive strategy, ensuring effective alignment
and matching between user queries and textual content in the knowledge
bases.

3. Long-Context Generation Long-Context Generation serves as the key
capability for performing in-depth financial analysis and providing com-
prehensive responses. However, due to the probabilistic nature of word
generation in LLMs, generating extended texts can lead to issues such
as logical discontinuities, topic drift, or information redundancy. To ad-
dress these challenges, we employed a directory tree strategy, ensuring the
generated text is both structured and rich in content.

Building the directory tree starts with a thorough analysis of the user’s
query, identifying key points to serve as root nodes. Utilizing the seman-
tic understanding capabilities of LLMs, we generate relevant sub-topics,
forming the first level of branches in the tree. This process is recursive,
continuing until a complete thematic structure is generated. Once the
directory tree is constructed, we move to the content generation phase.
Unlike traditional linear generation, the directory tree strategy allows for
modular text generation. For each node, we independently generate the
relevant content and then integrate it into the overall text. This approach
enhances content organization and effectively addresses issues of informa-
tion redundancy and topic drift.

4. Answer Traceability Answer traceability is achieved by meticulously
documenting each step of the answer generation process, including data
sources, analysis procedures, and the generation logic. This transparency
enhances user trust in the outputs and provides financial analysts with
the capability to verify and further analyze the answers.

The main functions of the Answer Tracer include source tracking, which
records the original data sources for each answer paragraph, such as index
libraries, databases, or public web searches; semantic similarity analy-
sis, which determines the correspondence between each sentence in the
answer and the original data blocks, identifying how information is ex-
tracted and transformed; indicator data extraction, which identifies and
extracts key financial indicators from the answers and clearly states their
sources; generation process documentation, which records each step of
the answer generation process, including self-evaluation results and opti-
mization processes, offering users a complete history of answer generation;
and visual representation, which uses user interface elements like timelines
and flowcharts to visually display the sources and generation process of
the answers.
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4.5.2.4 Evaluation

In the research and development of the Financial Knowledge Assistant, evalu-
ation is a critical phase to ensure the knowledge assistant’s performance and
reliability. Our evaluation strategy encompasses two main aspects: an end-to-
end evaluation and separate evaluations of each module and tool.

1. End-to-End Assessment This evaluation primarily focuses on the ac-
curacy and completeness of the answers, specifically whether the answers
correctly address the user’s queries. To achieve this, we constructed a test
set comprising over 1000 queries, covering a diverse range of topics and
complex scenarios within the financial domain, including both structured
and unstructured data. Each query was meticulously designed to thor-
oughly test the performance. After compiling these queries, we undertook
a comprehensive manual annotation of the answers. This step involved a
team of experts, who provided accurate and authoritative answers based
on the context and content of each query. These annotated answers served
as benchmarks in the evaluation process, used for comparison with the
system-generated answers.

In our evaluation of the financial knowledge assistant, the overall average
f1-score achieved was 83.03%. For different data sources, the F1 score of
text indexing is as high as 92.68%, table data indexing has an F1 score
of 66.07%, web data indexing has an F1 score of 87.58%, general knowl-
edge indexing has an F1 score of 79.76%, and database query indexing
has an F1 score of 85.82%. The methods for generating answers can be
broadly categorized into three types. The “Extraction” method, which
involves directly extracting answers from the given data, demonstrates a
high degree of precision, with an F1 score of 87%. The “Inference / Cal-
culation” method, which involves inferring or calculating data to generate
answers, has an F1 score of 67.07%, indicating room for improvement in
inference and calculation aspects. Lastly, the “Generative” method, such
as summary generation, has an F1 score of 79.52%, which showcases its
effectiveness in creative text generation.

2. Modular Assessment After our optimization of the Query Understander
and Evidence Finder, the recall rate @20 on the text index library can
reach 86.5%, and on the table index library, the recall rate @20 can achieve
92.66%.

The evaluation of the Answer Generator is primarily distinguished by the
length of the text, with an overall f1-score of 65.1% for the 4k evaluation
set and 41.91% for the 32k evaluation set. And the f1-score for text is
higher than the overall score on the table. In addition to this, we have also
designed some financial characteristic assessment metrics. For example,
in finance, many indicators names are very similar, but their meanings
differ. Therefore, we have increased the evaluation data specifically for
these issues. For example, the f1-score of confusion indicators is 94.44%
and 79.76% respectively to 4k and 32k data.
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5 Conclusion and Future Work

To build trustworthy LLMs for industrial applications, we advocate combining
symbolic AI with large-scale deep learning, alongside high-quality domain data
curation and alignment techniques. This approach aims to suppress hallucina-
tions and enhance explainability.

We detailed our work on constructing domain-specific LLMs for finance and
healthcare. The superior performance of these LLMs is evident in their state-
of-the-art scores on public benchmarks, such as CFA in finance and MedBench
in healthcare, as well as their attractive product features, including explainable
decision-making through neuro-symbolic computation. Our proposed neuro-
symbolic system offers a unique ”gray box” approach to trustworthy LLMs,
providing clear logical reasoning and transparency.

Our approach to trustworthy domain-sepcific LLMs is compatible with any
available foundation models. To illustrate the feasibility, we used our in-house
34B foundation models in the experiments of INF-Med for continuous training
and instruction alignment, while we chose the open-source Qwen2-72B base
model in the experiments of INF-Fin. Despite the different base models, we
achieved state-of-the-art results in both cases.

There remains much to explore in advancing the frontier of trustworthy
domain-specific LLMs. We plan to further investigate reinforcement learning
in complex logical reasoning scenarios to discover novel objectives. To combat
hallucinations, we may explore alternative architectures for LLMs to address
limitations in the attention mechanism. Additionally, designing comprehensive
evaluation datasets to quantify progress in trustworthiness will be valuable.
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